Technology
Our tech world view
Information technology has been exponentially improving for decades, yet material development remains well-nigh untouched by this transformation. While simulation techniques have long been developed in academia, they have still to be widely established in industrial applications. Common barriers are the highly specialized skills needed to use existing tools, computational infrastructure and lack of trust in the ability of simulations to reproduce material properties. In addition, most of the value in simulation trajectories go unused due to insufficient analysis techniques.
Compular is addressing these technology challenges by building a software designed to be easy to use for material scientists without computational background, where the simulation process is automated and run in the cloud, and much more value is extracted by our advanced analysis capabilities.
Molecular dynamics
Alternatives
Compular
A-
List Item #1
-
List Item #2
-
List Item #3
-
List Item #4
In-house
manual work
A
-
List Item #1
-
List Item #2
-
List Item #3
-
List Item #4
In-house
manual work
A
-
List Item #1
-
List Item #2
-
List Item #3
-
List Item #4
In-house
manual work
A
-
List Item #1
-
List Item #2
-
List Item #3
-
List Item #4
How it works
Setting up the simulations
Generating starting geometries
Running the simulations
Analysing the data
Visualising the results
Setting up the simulations
Generating starting geometries
Crystalline structures are generated by repeating a unit cell and adding optional defects at a fraction of sites. Amorphous systems are generated by randomizing a starting geometry and relaxing it until atoms are not unreasonably close given the material composition and density. Composites and liquid/solid systems are generated by combining separately generated regions. The user just needs to give the minimum needed information for our system builder to do the rest.
Running the simulations
The simulations are automatically submitted to our elastic compute cloud and dispatched to hardware optimized for each job. The user can track the progress of running simulations from the app. We use different well-established third-party simulation software packages for different types of simulations and classes of materials to get the best trade-off between accuracy and performance in each case.
Analysing the data
Visualising the results
All simulation and analysis data is stored in a structured manner in our databases, or downloaded to your own data stores, and can be queried by our app locally or in the cloud. Based on the material properties requested by the user, an automatic dashboard will be generated to visualize the results in a default presentation. The data can be accessed by a Python API within the app, enabling custom scripting and visualisation. Graphs, tables and raw data can also be exported.
1. Detect bonds
Proin posuere, enim vel efficitur suscipit, leo odio efficitur lacus, eu laoreet diam lacus in justo. Aenean efficitur est leo, sed rutrum ligula egestas ut. Mauris id erat non eros placerat mollis.
Suspendisse potenti. Integer iaculis sapien nec ex condimentum pharetra. Aliquam sit amet lectus gravida, pharetra felis non, pulvinar massa.
2. Generating starting geometry
Nullam fermentum pharetra
Sed nisi sed magna lacinia mattis. Curabitur egestas urna ut nunc aliquet, at consequat justo gravida. Curabitur dapibus velit non ligula lobortis porttitor.
Curabitur dapibus
Nullam fermentum pharetra dolor, a volutpat nunc tristique vitae. Morbi hendrerit convallis ornare. Praesent ut justo ac turpis lobortis tempus. Donec volutpat dolor quis dui dignissim fermentum.
Donec volutpat dolor
Maecenas sed erat a justo tempor viverra. Etiam vel porttitor ex. Vivamus dapibus ex non felis aliquam rutrum.
.... etc
Pellentesque sed nisi sed magna lacinia mattis. Curabitur egestas urna ut nunc aliquet, at consequat justo gravida. Curabitur dapibus velit non ligula lobortis porttitor.
Research references
R. Andersson, F. Årén, A. A. Franco and P. Johansson, Ion Transport Mechanisms via Time-dependent Local Structure and Dynamics in Highly Concentrated Electrolytes, Journal of the Electrochemical Society, 2020, DOI:10.1149/1945-7111/abc657
P. Jankowski, R. Andersson and P. Johansson, Designing high-performant lithium battery electrolytes by utilizing two natures of Li+ coordination: LiTDI/LiTFSI in Tetraglyme, Batteries & Supercaps, 2020, 4(1), 205-213, DOI:10.1002/batt.202000189.
R. Andersson, Dynamic Structure Discovery and Ion Transport in Liquid Battery Electrolytes, Chalmers University of Technology, 2020
R. Andersson, F. Årén, A. A. Franco and P. Johansson, CHAMPION: Chalmers Hierarchical Atomic, Molecular, Polymeric & Ionic Analysis Toolkit, Journal of Computational Chemistry, 2021, DOI:10.1002/jcc.26699
R. Andersson, O. Borodin, P. Johansson, Dynamic Structure Discovery Applied to the Ion Transport in the Ubiquitous Lithium-ion Battery Electrolyte LP30, Journal of the Electrochemical Society, 2022, DOI:10.1149/1945-7111/ac96af
Deepdive into an electrolyte case
Thing 1
Proin posuere, enim vel efficitur suscipit, leo odio efficitur lacus, eu laoreet diam lacus in justo. Aenean efficitur est leo, sed rutrum ligula egestas ut. Mauris id erat non eros placerat mollis.
Suspendisse potenti. Integer iaculis sapien nec ex condimentum pharetra. Aliquam sit amet lectus gravida, pharetra felis non, pulvinar massa.
Thing 2
Nullam fermentum pharetra
Sed nisi sed magna lacinia mattis. Curabitur egestas urna ut nunc aliquet, at consequat justo gravida. Curabitur dapibus velit non ligula lobortis porttitor.
Curabitur dapibus
Nullam fermentum pharetra dolor, a volutpat nunc tristique vitae. Morbi hendrerit convallis ornare. Praesent ut justo ac turpis lobortis tempus. Donec volutpat dolor quis dui dignissim fermentum.
Donec volutpat dolor
Maecenas sed erat a justo tempor viverra. Etiam vel porttitor ex. Vivamus dapibus ex non felis aliquam rutrum.
Thing 3
Pellentesque sed nisi sed magna lacinia mattis. Curabitur egestas urna ut nunc aliquet, at consequat justo gravida. Curabitur dapibus velit non ligula lobortis porttitor.